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Abstract

The paper considers estimation of Bellman function using revision of the past
decisions. The original approach is further extended by employing predictions
coming from an imperfect predictor. The resulting algorithm speeds up the con-
vergence of Bellman function estimation and improves the results quality. The
potential of the approach is demonstrated on a futures market data.

1 Introduction

The dynamic programming (DP) is clever and effective framework in many problems [1, 2]. Unfor-
tunately, it also suffers by many issues such as curse of dimensionality [6]. Moreover, the incomplete
knowledge and uncertainty makes the dynamic programming task hardly solvable, although the an-
alytical solution of DP task is known [5]. The approximate dynamic programming (ADP) tries to
solve the DP tasks and fight with all the technical issues. There are many ways to approximate the
dynamic programming, but all of them assume that the approximation is precise enough to solve the
problem. There is only a few approaches implicitly assuming the non-ideal or imperfect approxima-
tion. This paper presents such a approach related to solution of Bellman equation[1], i.e. estimation
of Bellman function.1

The value iteration algorithm [1, 2, 4] makes the theoretical ground for estimation of Bellman func-
tion. It also suffers by dimensionality [4], which is often solved by approximate methods (see [3]
for a review). There is an duality relation between optimal decision rule and Bellman function [1]
and value iteration uses the idea of the convergent improving of Bellman function and decision rule
- both together. Unfortunately, the value iteration is difficult to solve for tasks with continuous vari-
ables. We try to approximate Bellman function in value iteration and to speed up the convergence
by searching the samples of the optimal decision rule [7]. The present approach can be extended
using the prediction. This extension can bring only restricted impact, therefore must be considered
a non-ideal predictor and its properties. Hence, the paper presents the imagination of the ideal and
non-ideal predictor and their influence to estimation of Bellman function. These imaginations are
compared and we point out the break, where the non-ideal one stops working. Respecting such a
property, we can improve the estimation of Bellman function.

The paper briefly introduces the dynamic programming and estimation of Bellman function in Sec.
2. Then introduces the revisions and the related optimality criterion (Sec. 3) and considers the
extension of the approach by additional usage of ideal and non-ideal prediction (Sec. 4). Finally,
tests the presented idea on the task of trading commodity futures (Sec. 5).

1also called value function or cost-to-go function
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2 Dynamic programming and revisions

We consider discrete time t ∈ {1, 2, . . . , T} = t∗, where T is horizon. We consider decision maker,
which is human or machine with particular aims to a part of world, so-called system. The decision
maker observes the system and obtains observation yt, then designs decision ut and applies it to the
system, this process is repeated at each time t ∈ t∗. The information available to design decision ut
is called knowledge Pt and consists of past observation and past decisions, Pt = {y1, y2, . . . , yt} ∪
{u1, u2, . . . , ut−1}. The decision maker designs a decision rule, ut = πt(Pt). The aim of the
dynamic programming is to design the sequence of decision rules π1, π2, . . . , πT , so-called strategy,
in order to maximize the sum of the gain functions

∑T
t=1 gt under the conditions above.

We consider the following task properties: (i) The decision maker and its environment work in
open loop, i.e. decisions have influence neither on the environment behavior nor future observa-
tion; (ii) gain function has form gt(Pt, ut) and it depends at last n observations and decisions, i.e.
gt(yt−n, . . . , yt, ut−n, . . . , ut), where n is finite number.

2.1 Finite and infinite horizon

The optimal rule for finite horizon T can be constructed value-wise (see [5])

πo
t (Pt) = arg max

ut

E [gt + Vt+1(Pt+1)|ut, Pt] , (1)

where function Vt+1(.) is Bellman function and it is given by recurrence

Vt(Pt) = max
ut

E [gt + Vt+1(Pt+1)|ut, Pt] (2)

with the terminal condition
VT+1(PT+1) = 0. (3)

The equations (1, 2, 3) form the algorithm of dynamic programing with finite horizon T . This
algorithm is important for revisions.

We consider task with infinite horizon T = +∞. Consequently, the solution has stationary form:

πo(Pt) = arg max
ut

E [gt + V(Pt+1)|ut, Pt] , (4)

where function V is stationary Bellman function and it is given by recurrence

V(Pt) = max
ut

E [gt + V(Pt+1)|ut, Pt] . (5)

The equation (4) contains two terms at right-hand side. In general, both therms in (4) can be calcu-
lated difficultly due to uncertainty, incomplete knowledge, demanded prediction etc. Hence, ADP
considers approaches how to calculate the terms, or to approximate them adequately. We focus on
the approximation of Bellman function.

2.2 Estimation of Bellman function

Let us consider the infinite horizon task. The equation (4) contains two terms at right-hand side.
First term is gain function gt, which can be evaluated under knowledge Pt for the considered shape
of gt. Second term is Bellman function V(.) in stationary form applied on unavailable knowledge
Pt+1. Under knowledge Pt the decision maker must predict further knowledge Pt+1 and estimate
Bellman function.

Let us assume that we have ideal predictorMI(.) such as it can predict Pt+1 =MI(Pt). Equation
(5) can be written for each time index i ∈ {1, . . . , t}

V(Pi) = max
ui

E
[
gi + V(MI(Pi))|ui, Pi

]
. (6)

The obtained t-equations system contains the main information about Bellman function V(.). As-
suming the knowledge of the optimal decisions uo1, . . . , u

o
t , the system is transformed to final form:

V(Pi) = E
[
gi + V(MI(Pi))|uoi , Pi

]
, for i ∈ {1, . . . , t}. (7)
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This equations system contains only unknown function V(.) and can be used to estimation Bellman
function [7]. The information contained in (7) is not full, therefore this system can bring only
an approximate solution. This approximate solution can be found considering approximation of
Bellman function in parametrized form V(.) ≈ V (.,Θ), where Θ is finite dimensional unknown
parameter. The system (7) characterizes points of Bellman function and inserting the approximation
V (.,Θ) the system is transformed to system for unknown variable Θ. Typically, the number of
equations in (7) is bigger than dimension of parameter Θ. Hence, the best estimation of parameter
Θ̂ is searched by regression methods.

This approach originates from value iteration [4] and the system (7) can be interpreted as subsystem
of the full system:

V(P ) = E
[
gi + V(MI(P ))|πo(P ), P

]
, for P ∈ P ∗. (8)

Bellman function V(.) is a solution of system (8). The formal difference between system (7) and
(8) is in the used knowledge. While system (8) contains all possible values of P , the system (7)
contains only the realizations passed during the decision process P1, P2, . . . , Pt. We have assumed
the knowledge of the optimal decisions related to these realizations, therefore the term πo(P ) is
known only for these realizations uoi = πo(Pi) for i ∈ {1, 2, . . . , t}. All in all, the system (8)
contains a full information about Bellman function, whereas the system (7) contains only t points of
Bellman function.

3 Revisions

The previous approach depends on the possibility to find the optimal decisions uo1, . . . , u
o
t for the

given knowledge Pt. This is possible to obtain by the revisions.

The revision is the reconsideration of the decision under another knowledge than was used to design
it. To design decision the maximal available knowledge is used, but we can redesign the decision
under higher knowledge; let us denote the rules and the decisions by superscript, which characterizes
the knowledge used to design the rule, e.g. ut+i

t = πt+i(Pt) is redesign of the tth rule/decision under
knowledge Pt+i. But we omit the superscript, when the rule/decision is designed under natural
conditions ut = utt = πt

t(Pt) = πt(Pt) is rule/decision designed under the knowledge available to
design it. This differs the revision and the decisions. One clever way of this redesign is solving the
same task, but with the finite horizon T ≡ t. We can reconsider all decision using the equations (1,
2, 3). And obtain the revision based on the knowledge Pt:

U t
t = {ut1, ut2, ut3, . . . , utt}, (9)

where uti = πt
i(Pt) for i ∈ {1, 2, . . . , t}. The sequence U t

t is called t-revision. Due to asymptotic
properties of DP [5], the revisions tends to optimal values, i.e. uti = πt

i(Pi)→ πo
i (Pi) = uoi .

3.1 Optimality of revision

For our special shape of the gain function, the convergence can be interpreted as weighting of the
influence of the terminal condition (3) and information contained in data, inserted into gt. The
algorithm of searching of t-revision goes backwards and from design of πt

t(.) to πt
1(.). The terminal

condition (3) influences a decision rule πt
i(.) via Bellman equation (2). But the information-rich

data can quickly decrease the influence, such as πt
t(.) is influenced, but further πt

t−1(.), πt
t−2(.), . . .

are influenced less and less. When the influence of terminal condition is lost for l ∈ {1, 2, . . . , t}
and πt

l (.) is independent on terminal condition (3), then the decision rule πt
i(.) maps the knowledge

to optimal decision, where i ∈ {l, l − 1, l − 2, . . . , 1}. The optimality is given by the independence
on the terminal condition and the absolute dependence on the data.

The issue is to recognize, whether the optimality was reached. This factor can negative influence
the potential of estimation of Bellman function. The bad recognized optimality can lead in: learning
from non-optimal decisions, i.e. adding the non-valid equations to system (7); or redundant omission
of some optimal decisions, i.e. omission available equations of system (7). Hence, the preciseness
of optimality recognition is required.
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The possible way how to recognize the optimal decision lies in independence on the terminal con-
dition (3). Let us consider the terminal condition in form:

VT+1(PT+1) = f(PT+1), (10)

where f(.) is general function of PT+1. Let us denote the class of all those functions F. The revision
algorithm (1, 2, 3) can be generalized by usage the terminal condition (10) instead of (3). Then, the
revision can be written as function of knowledge and terminal condition uti = πt

i(Pi, f).

Finally, the revision of decision uti equals optimal decision uoi , if the revision does not depend on
terminal condition (10), i.e.

∃ũi ∈ u∗ ∀f ∈ F πt
i(Pi, f) = ũi. (11)

and the constant ũi is the optimal decision, uoi = ũi.

The impact of this proposition is great, because it represents the inter-connection between the finite
and infinite horizon task. The proposition gives algorithm how to use the generalized finite horizon
task (1, 2, 10) to find some optimal decisions of infinite horizon task (4, 5). Unfortunately, the
proposition does not guarantee that any optimal decisions will be found. Typically, there exists
an index to such that revisions ut1, u

t
2, . . . , u

t
to are optimal and independent on f ; and revisions

utto+1, . . . , u
t
t cannot be decided, whether are optimal because of the dependence on f .

The proposition uses simply idea that the interconnection between two consequent decisions is done
via Bellman equation and the connection term is Bellman function. Using the right Bellman function
Vt+1(.) we could connect the finite horizon task and infinite horizon task easily. Unfortunately,
Bellman function is unknown therefore the proposition must go over all possible candidates f ∈
F, i.e. over all possible interconnections. Having a bit information about Bellman function, it is
possible to exclude the impossible candidates and use the proposition over subset F′ ⊂ F containing
only the possible ones. This idea can be reached by usage of predictions.

4 Revision and prediction

As was mentioned above, we can operate with ideal predictor MI(.) such as Pt+1 = MI(Pt).
Having the ideal predictor, we can use it recursively to predict Pt+i for any i > 0 and use the Pt+i

as information for revision and searching its optimality. Such a approach can help us to increase the
value to and use all available equations of system (7).

Let us consider the revision algorithm. For Pt, the algorithm starts with terminal condition (10). For
one-step prediction Pt+1, the algorithm has one more step and due to back recursion in (2) obtain
Vt+1, i.e. the restricted analogy of condition (10), after one step:

Vt+2(Pt+2) = f(Pt+2), (12)
Vt+1(Pt+1) = max

ut+1

E [gt+1 + Vt+2(Pt+2)|ut+1, Pt+1] , (13)

where we expect that f ∈ F, and Vt+1(Pt+1) ∈ F1 ⊆ F.

This expectation originates from properties of Bellman equation, which can be viewed as operator
on class F, i.e. Vi = T (Vi+1), see [1, 2]. The recursion (2) converges for each terminal condition.
Consequently, the operator has following property limn→+∞ T n(f) = V , where T n(.) is operator
T (.) n-times recursively applied onto f ∈ F and V is Bellman function. Hence, we can expect that
the operator T (.) applied on all functions in F produces the subset of F:

F1 = T (F) and F1 ⊆ F. (14)

Furthermore, each prediction step can be used as one more application of operator T (.), which
reduces the set of possible candidates to terminal Vt+1. The h-step prediction generates h subsets
of F as is depicted at Fig. 1. The usage of prediction can be interpreted as starting the optimality
criterion from less set Fi instead of F, which can result in earlier recognizing the optimal decisions,
i.e. obtaining higher value to.

Of course, we do not have the ideal predictor MI(.), but often we can use an predictor P̂t+1 =
M(Pt). We assume that the predictor M(.) has some restricted preciseness and degenerates the
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Figure 1: The convergence of operator J in space of possible Bellman functions: V is optimal
Bellman function, F is space of possible Bellman functions.

operator T → T̂ . Let us denote: F̂1 = T̂ (F) and F̂i+1 = T̂ (F̂i). Typically, the non-ideal predictor
predicts quite good first one or two steps and then the predictions go worse. The expected influence
to Bellman function is depicted at Fig. 1, where the ’Normal predictor’ gets lost in second step and
the operator T̂ converges to the other function. Despite of this fact, the non-ideal predictor can be
successfully used, when the number of prediction steps is restricted. The restriction equals to index
of the last set including Bellman function; e.g. it can be used only as one-step predictor in case
depicted at Fig. 1. We expect that this phenomenon would be observable as relation between length
of used predictions and results quality. We expect slowly increase followed by rapid decrease of
results quality according to the growing prediction length.

5 Experiment

The following experiment should demonstrate the expected properties. We compare: (i) the original
method to estimation of Bellman function, where the optimal revisions were searched at available
data, i.e. the terminal condition (10) was taken over whole set F; and (ii) the presented method,
where the optimal revisions were searched at available data extended by prediction, i.e. the terminal
condition (10) was taken over the subset F̂i ⊆ F. The set of experiments contains 11 experiments
per data sequence. Each experiment is related with one prediction length 0-10, where zero length is
the original task using F and the other lengths l ∈ {1, 2, . . . , 10} corresponds with the systems of
sets F̂1, . . . , F̂10 (see previous section).

We expect that results quality will grow with length of prediction to some break value. Then, the
result quality will decrease. This expectation is caused by the imagination of the non-ideal predictor
analogical to Fig. 1, where Bellman function is in F̂1, but it is not in F̂2. Thus, we expect that each
data set should have some length of prediction l, where Bellman function is in F̂l, but it is not in
F̂l+1. The approach to estimate of Bellman function should work most effective, when starts with
the smallest subset F̂l containing the Bellman function V(.). Otherwise, when it starts with subset
F̂l+1, it need more information to find Bellman function, because it got lost by irrelevant set F̂l+1

and the convergence is delayed. We expect that this phenomenon should be observable as results
quality increase for prediction length 1, 2, . . . , l, followed by quality decrease for prediction length
l + 1, . . . , 10.

The experiment was done on trend prediction task based on the trading with commodities. The task
is classical price speculation, where decision maker tries to predict future price trend and chose the
decision to follow the trend. The gain function has shape:

gt = (yt − yt−1)ut−1 + C|ut−1 − ut|, (15)

where yt−1, yt are samples of price sequence, ut−1, ut are decisions and C is transaction cost. The
decision can be chosen from two-values set ut ∈ {−1, 1}, where ut = 1 characterizes the future
price increase and ut = −1 characterizes decrease.
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The data used for experiment are day samples of price, so-called close price. The used time series
are related to following five commodities: Cocoa - CSCE (CC), Petroleum-Crude Oil Light - NMX
(CL), 5-Year U.S. Treasury Note - CBT (FV2), Japanese Yen CME (JY), Wheat - CBT (W). The
used data were collected between January 1990 and September 2005, which is about 4000 trading
days.

The experiment designs the decisions via approximated (4). The predictor M(.) is based on the
autoregressive model, yt+1 = αyt + βyt−1 + et, where α, β are model parameters and et is noise,
et ≈ N(µ, σ). The model parameters are estimated via Bayesian estimation [5]. The prediction is
calculated recursively P̂t+1 = M(Pt), and P̂t+i+1 = M(P̂t+i) for i ∈ {1, . . . , 9}. And Bellman
function is approximated in parametrized form:

V(Pt) ≈ V (Pt,Θ) = Θ′Ψt(Pt), (16)

where Θ is vector of n+ 1 parameters and Ψt(Pt) = (yt, yt−1, . . . , yt−n+1, 1)′, which is 1st order
Taylor expansion of Bellman function V(.). The parameters Θ are estimated via system (7) and the
count of equation to in system (7) is estimated via revisions and the optimality proposition.

Table 1 contains experiment results. According to our expectation, the results written by bold font
have the expected growing quality. As can be seen, the prediction improved the results quality
in all datasets according to non-prediction experiment for l = 0. The length of growing trend
is related with feasibility of the predictor to the dataset, and it was expected that the 1- or 2-step
prediction can improve the results. Hence, the results of 3-step prediction at CC and JY can be
viewed as unexpected success. A little surprising fact is the quality of results after the increase.
We have expected the rapid decrease due to worse initial conditions, but a few experiments reached
comparatively results or better results. The expected behavior can be demonstrated at CL dataset,
where l ∈ {0, 1, 2} the results quality grows and then fall down and stay under the value for l = 0.
An representative of the surprising is JY dataset, which grows for l ∈ {0, 1, 2}, then it decrease,
but then it increases and reaches better results than for l ∈ {0, 1, 2}. The mentioned facts lead to
conclusion that the prediction improve the results for a few steps. But after these steps, there cannot
be expected any property or trend related to the prediction length.

6 Conclusion

The paper presents the approach to estimation of Bellman function via revisions. The revisions are
originally calculated from the knowledge available to design the decision. The paper considers ex-
tension of this approach by the usage of predictions. It is expected the better convergence to Bellman
function. The idea is considered for ideal predictor and non-ideal predictor. The ideal predictor can
simply improve the algorithm, but it is unavailable, whereas all available predictors can be classified
as non-ideal. The imagination of the non-ideal predictor leads to expectation that the prediction can
improve the approach, when is used a restricted number of prediction steps.
The idea is experimentally tested on trend prediction task, where works quite well. The results have
verified the idea that the improvement is related to restricted number of prediction steps. But sur-
prising was the fact that after these few steps, the improvement can be reached, but randomly. This
opens the question of the better analysis of the problem: the paper describes only a raw imagination
of the problem and the convergence in set F, and relations between sets F̂i and F̂i+1 can be more
complex than was presented. This fact is topic of the further consideration.
Moreover, the paper presents that the number of prediction steps should be restricted, but it does not
give any guidelines how to estimate the right length of the prediction. The right guidelines can make
the approach suitable for applications and should be also considered in future.

Ex. 0 1 2 3 4 5 6 7 8 9 10
CC -13,0 -13,0 -10,7 -3,5 -10,9 -6,6 -12,8 -15,2 -15,2 -8,2 -6,3
CL -14,2 -9,6 -6,8 -16,0 -23,8 -21,4 -14,9 -16,7 -21,7 -25,1 -24,8
FV2 2,6 24,2 23,1 19,2 22,1 24,8 24,7 27,1 27,4 23,7 16,5
JY 8,3 20,4 22,5 40,6 28,3 30,9 30,8 44,6 39,9 15,5 1,7
W 2,2 16,0 17,5 12,9 11,0 13,9 10,7 7,6 8,1 13,3 12,6

Table 1: Results of experiments Ap1-Ap10 in $1000 USD.
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